

HYDRAULIC TURBOMACHINES

Exercises 4 Axial Turbines

Hydropower plant equipped with Kaplan turbines

The Gezhouba power plant is located in the Hubei province, China (the frequency of the electrical grid is equal to $f_{grid} = 50$ Hz). It is equipped with 2 Kaplan turbines of 176 MW and 5 Kaplan turbines of 129 MW. In this problem, we will investigate the 176 MW units. A cut-view of the Kaplan unit is given in Figure 1.

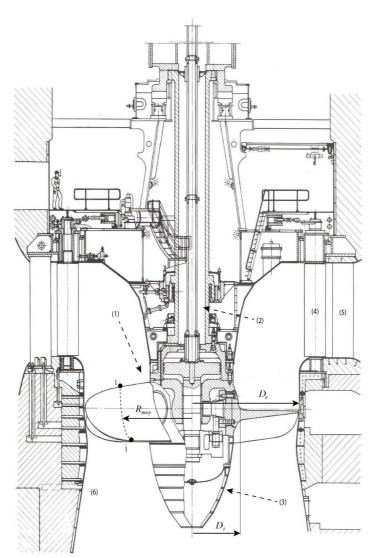


Figure 1 – Kaplan turbine unit - Gezhouba power plant.

7. Place in Figure 1 the ID number of the following components:

Number	Name
(1)	Runner
(2)	Shaft
(3)	Hub
(4)	Guide vanes
(5)	Stay vanes
(6)	Draft tube

8. Compute the specific potential energy of the installation for an upstream reservoir level of $Z_B = 45$ m and a downstream reservoir level of $Z_{\overline{B}} = 25$ m. The value of the gravitational constant is g = 9.794 m s⁻².

$$gH_B - gH_{\bar{B}} = g(Z_B - Z_{\bar{B}}) = 195.88 \text{ Jkg}^{-1}$$

9. For a nominal discharge of $Q = 1130 \text{ m}^3\text{s}^{-1}$, the head losses of the installation have been measured and are equal to $\sum gH_r = 13.48 \text{ J kg}^{-1}$. Compute the available specific energy of the turbine. Deduce the net head H of the turbine.

$$E = gH_B - gH_{\overline{B}} - \sum gH_r = 182.4 \text{ Jkg}^{-1}$$

$$H = \frac{E}{g} = 18.6 \text{ m}$$

10. For this turbine, the pole number of the generator is equal to $Z_0 = 110$. Compute the runner frequency n and the specific speed v of the runner.

$$n = \frac{2f_{grid}}{Z_0} = 0.91 \text{ Hz}$$

$$\omega = 2\pi n = 5.712 \text{ rad s}^{-1}$$

$$v = \frac{\omega\sqrt{Q}}{\sqrt{\pi} (2E)^{\frac{3}{4}}} = 1.298$$

11. Compute P_h , the hydraulic power. The value of water density ρ is 998 kg m⁻³.

$$P_{h} = \rho \ Q \ E = 205.7 \ \text{MW}$$

12. We assume an energy efficiency for this turbine of $\eta_e = 92$ %. Compute the transformed (or supplied) specific energy E_t .

$$E_t = \eta_e E = 167.8 \text{ J kg}^{-1}$$

13. Compute the torque experienced by the runner shaft T_t .

We neglect the leakage flow loss, i.e. the volumetric efficiency $\eta_q = 1.0$

$$Q_{t} = Q$$

$$P_{t} = \omega T_{t} = \rho \ Q \ E_{t} = 189.2 \text{ MW}$$

$$T_{t} = \frac{P_{t}}{\omega} = 33.1 \times 10^{6} \text{ Nm}$$

09.11.2023 EPFL Page 2/4

14. Compute the mechanical efficiency (defined by $\eta_{me} = \eta_{rm} \cdot \eta_m$), and global machine efficiency. Neglect the generator losses.

$$\eta_{me} = \frac{P}{P_t} = 0.93$$

$$\eta = \frac{P}{P_b} = 0.856$$

15. The streamline $1 - \overline{1}$ is supposed to be on a cylinder with a mean radius R_m . The internal and external diameters are equal to $D_i = 4.520$ m and $D_e = 11.3$ m. Compute the peripheral runner speed U_1 and $U_{\overline{1}}$.

$$U_1 = \omega R_m = 2\pi n R_m = 2\pi n \frac{D_e + D_i}{4} = 22.61 \text{ ms}^{-1}$$

$$U_{\bar{1}} = \omega R_m = 2\pi n R_m = 2\pi n \frac{D_e + D_i}{4} = 22.61 \text{ ms}^{-1}$$

16. By considering that the flow at the runner outlet is purely axial, compute Cu_1 the peripheral component of the absolute velocity at the runner inlet.

By solving the Euler equation and considering a purely axial flow ($^{\text{Cu}_{\bar{1}}=0 \text{ ms}^{-1}}$):

$$Cu_1 = \frac{E_t}{U_1} = 7.42 \text{ ms}^{-1}$$

17. Compute the meridional components of the absolute velocity Cm_1 et Cm_{-1} .

$$A_1 = A_{\overline{1}} = \frac{\pi (D_e^2 - D_i^2)}{4} = 84.24 \,\mathrm{m}^2$$

$$C_{m_1} = \frac{Q}{A} = 13.41 \text{ ms}^{-1}$$

$$C_{m_{\overline{1}}} = \frac{Q}{A_{\overline{1}}} = 13.41 \text{ ms}^{-1}$$

18. From the previous results, compute the angles α_1 and β_1 at the runner inlet, and α_{-1} and β_{-1} at the runner outlet.

$$\alpha_1 = \tan^{-1} \left(\frac{Cm_1}{Cu_1} \right) = 61.04^\circ$$

$$\beta_1 = \tan^{-1} \left(\frac{Cm_1}{U_1 - Cu_1} \right) = 41.44^{\circ}$$

$$\alpha_{\overline{1}} = 90^{\circ}$$

$$\beta_{\overline{1}} = \tan^{-1} \left(\frac{Cm_{\overline{1}}}{U_{\overline{1}} - Cu_{\overline{1}}} \right) = 30.67^{\circ}$$

19. Finally, sketch the corresponding velocity triangles at the runner inlet and outlet.

09.11.2023 EPFL Page 3/4

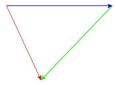
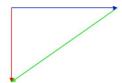



Figure 2 – Velocity triangle - Runner Inlet.

 $\label{eq:Figure 3-Velocity triangle - Runner Outlet} \textit{Endows a Velocity triangle - Runner Outlet}.$

09.11.2023 EPFL Page 4/4